Outer membrane protein OlpA contributes to Moraxella catarrhalis serum resistance via interaction with factor H and the alternative pathway.
نویسندگان
چکیده
Factor H is an important complement regulator of the alternative pathway commonly recruited by pathogens to achieve increased rates of survival in the human host. The respiratory pathogen Moraxella catarrhalis, which resides in the mucosa, is highly resistant to the bactericidal activity of serum and causes otitis media in children and respiratory tract infections in individuals with underlying diseases. In this study, we show that M. catarrhalis binds factor H via the outer membrane protein OlpA. M. catarrhalis serum resistance was dramatically decreased in the absence of either OlpA or factor H, demonstrating that this inhibition of the alternative pathway significantly contributes to the virulence of M. catarrhalis.
منابع مشابه
The UspA2 protein of Moraxella catarrhalis is directly involved in the expression of serum resistance.
Many strains of Moraxella catarrhalis are resistant to the bactericidal activity of normal human serum. Previous studies have shown that mutations involving the insertion of an antibiotic resistance cartridge into the M. catarrhalis uspA2 gene resulted in the conversion of a serum-resistant strain to a serum-sensitive phenotype. In the present study, the deletion of the entire uspA2 gene from t...
متن کاملAntigenic structure of outer membrane protein E of Moraxella catarrhalis and construction and characterization of mutants.
Outer membrane protein E (OMP E) is a 50-kDa protein of Moraxella catarrhalis which possesses several characteristics indicating that the protein will be an effective vaccine antigen. To study the antigenic structure of OMP E, eight monoclonal antibodies were developed and characterized. Three of the antibodies recognized epitopes which are present on the bacterial surface. Fusion peptides corr...
متن کاملImmunization with the Truncated Adhesin Moraxella catarrhalis Immunoglobulin D–Binding Protein (MID) Is Protective against M. catarrhalis in a Mouse Model of Pulmonary Clearance
Most Moraxella catarrhalis isolates express the outer membrane protein MID. In addition to its specific affinity for immunoglobulin D, MID functions as an adhesin and binds to human epithelium. The adhesive part is localized within MID. Two mid-deficient M. catarrhalis isolates were constructed and examined in a mouse model of pulmonary clearance. M. catarrhalis devoid of MID was cleared more e...
متن کاملMID and UspA1/A2 of the human respiratory pathogen Moraxella catarrhalis, and interactions with the human host as basis for vaccine development.
Moraxella catarrhalis IgD-binding protein MID is a 200 kDa autotransporter protein that exists as a oligomer and is governed at the transcriptional level. The majority of M. catarrhalis clinical isolates expresses MID. Two functional domains have been attributed to MID; MID764-913 functions as an adhesin and promotes the bacteria to attach to epithelial cells, whereas the IgD-binding domain is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of infectious diseases
دوره 210 8 شماره
صفحات -
تاریخ انتشار 2014